Pages

October 5, 2012

How order arises from the random motion of particles in the cosmos

One of the unsolved mysteries of contemporary science is how highly organized structures can emerge from the random motion of particles. This applies to many situations ranging from astrophysical objects that extend over millions of light years to the birth of life on Earth.

The surprising discovery of self-organized electromagnetic fields in counter-streaming ionized gases (also known as plasmas) will give scientists a new way to explore how order emerges from chaos in the cosmos. This breakthrough finding was published online in the journal, Nature Physics on Sept. 30.

"We've created a model for exploring how electromagnetic fields help organize ionized gas or plasma in astrophysical settings, such as in the plasma flows that emerge from young stars," said lead author Nathan Kugland, a postdoctoral researcher in the High Energy Density Science Group at Lawrence Livermore National Laboratory (LLNL). "These fields help shape the flows, and likely play a supporting role alongside gravity in the formation of solar systems, which can eventually lead to the creation of planets like the Earth."

"This observation was completely unexpected, since the plasmas move so quickly that they should freely stream past each other," explained Hye-Sook Park, team leader and staff physicist at LLNL. Park added that "laser-driven plasma experiments can study the microphysics of plasma interaction and structure formation under controlled conditions."

No comments:

Post a Comment