Pages

September 19, 2012

Using a laser to 'see' the smallest world: Powerful laser breathes new life into an old technology for studying atomic-level structures

A multi-university team has employed a high-powered laser based at UC Santa Barbara to dramatically improve one of the tools scientists use to study the world at the atomic level. The team used their amped-up electron paramagnetic resonance (EPR) spectrometer to study the electron spin of free radicals and nitrogen atoms trapped inside a diamond.

The improvement will pull back the veil that shrouds the molecular world, allowing scientists to study tiny molecules at a high resolution.

"We developed the world's first free-electron laser-powered EPR spectrometer," said Susumu Takahashi, assistant professor of chemistry at the USC Dornsife College of Letters, Arts and Sciences, and lead author of the Nature paper. "This ultra high-frequency, high-power EPR system gives us extremely good time resolution. For example, it enables us to film biological molecules in motion."

By using a high-powered laser, the researchers were able to significantly enhance EPR spectroscopy, which uses electromagnetic radiation and magnetic fields to excite electrons. These excited electrons emit electromagnetic radiation that reveals details about the structure of the targeted molecules.

No comments:

Post a Comment