Pages

June 20, 2012

Solar nanowire array may increase percentage of sun's frequencies available for energy conversion

Researchers creating electricity through photovoltaics want to convert as many of the sun's wavelengths as possible to achieve maximum efficiency. Otherwise, they're eating only a small part of a shot duck: wasting time and money by using only a tiny bit of the sun's incoming energies.

For this reason, they see indium gallium nitride as a valuable future material for photovoltaic systems. Changing the concentration of indium allows researchers to tune the material's response so it collects solar energy from a variety of wavelengths. The more variations designed into the system, the more of the solar spectrum can be absorbed, leading to increased solar cell efficiencies. Silicon, today's photovoltaic industry standard, is limited in the wavelength range it can 'see' and absorb.

But there is a problem: Indium gallium nitride, part of a family of materials called III-nitrides, is typically grown on thin films of gallium nitride. Because gallium nitride atomic layers have different crystal lattice spacings from indium gallium nitride atomic layers, the mismatch leads to structural strain that limits both the layer thickness and percentage of indium that can be added. Thus, increasing the percentage of indium added broadens the solar spectrum that can be collected, but reduces the material's ability to tolerate the strain.

No comments:

Post a Comment